Nanofluids for thermal transport
نویسندگان
چکیده
challenges facing many diverse industries, including microelectronics, transportation, solid-state lighting, and manufacturing. Technological developments such as microelectronic devices with smaller (sub-100 nm) features and faster (multi-gigahertz) operating speeds, higher-power engines, and brighter optical devices are driving increased thermal loads, requiring advances in cooling. The conventional method for increasing heat dissipation is to increase the area available for exchanging heat with a heat transfer fluid. However, this approach requires an undesirable increase in the thermal management system’s size. There is therefore an urgent need for new and innovative coolants with improved performance. The novel concept of ‘nanofluids’ – heat transfer fluids containing suspensions of nanoparticles – has been proposed as a means of meeting these challenges1.
منابع مشابه
Toward nanofluids of ultra-high thermal conductivity
The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofl...
متن کاملTwo-phase numerical model for thermal conductivity and convective heat transfer in nanofluids
Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the stu...
متن کاملEffect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids
In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of ...
متن کاملStudy of the effect of particles size and volume fraction concentration on the thermal conductivity and thermal diffusivity of Al2O3 nanofluids
In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, and 63 nm diameter Aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (that is, by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 h. The transient hot-wire las...
متن کاملPreparation and properties of copper-oil-based nanofluids
In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanoflu...
متن کاملAl2O3-based nanofluids: a review
Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovat...
متن کامل